精品国产中文字幕国产精品成人欧美性做久久久|最新国产中文字幕|亚洲欧美日韩精品久久久|久久综合九色综合久久久精品综合|少妇精品亚洲一区二区成人|91精品91久久久高清黑网|精品人妻一二三四|日韩熟女毛片|美丽人妻中出中文字幕|91大香蕉在线视频,亚洲中字字幕,东京热日韩av,日韩精品毛片精品一区到三区

高三2025屆全國高考分科模擬調(diào)研卷·(一)1數(shù)學(xué)答案

11
高三2025屆全國高考分科模擬調(diào)研卷·(一)1數(shù)學(xué)答案正在持續(xù)更新,,本期2024-2025全國100所名校答案網(wǎng)為大家整理了相關(guān)試題及答案,,供大家查缺補(bǔ)漏,高效提升成績,。

本文從以下幾個(gè)角度介紹,。

    1、2024年全國高考調(diào)研模擬試卷二數(shù)學(xué)
    2,、2024全國高考調(diào)研模擬卷二
    3,、2024高考數(shù)學(xué)答案
    4、2024高考模擬調(diào)研卷二數(shù)學(xué)
    5,、2024年全國高考調(diào)研模擬試卷五
    6,、2024年全國高考調(diào)研模擬試卷(二)理科綜合
    7、2024年全國高考調(diào)研模擬試卷(五)理科綜合
    8,、2024年全國高考調(diào)研模擬試卷二理科綜合
    9,、2024全國高考調(diào)研模擬試卷五
    10、2024年全國高考調(diào)研模擬試卷5
因?yàn)镈E中平面PAC,PAC平面PAC,所以DE∥平面PAC.此時(shí),,立如圖所示的空月直角坐標(biāo)系O,則B(,-S,又OD,DEC平面ODE,OD∩DE=D,所以平面ODE∥平面PAC.又OEC平面ODE,所以O(shè)E∥平面PAC.0e停2on6.sop(oo9(2)連接OA,因?yàn)镻O⊥平面ABC,OA,OBC平面ABC,所故PC=(以PO⊥OA,PO⊥OB,停,29,,》.c-0,0,西所以O(shè)A=OB=√PA2-P02=√/52-32=4.易得在△AOB中,,∠OAB=∠ABO=30°,所以O(shè)D=-(-0Asin30°=4X2=2,設(shè)平面BPC的一個(gè)法向量為1=(x,y,1),則由n1⊥PC,W626V6」AB-2AD-2OAcos 30-2X4X43.11BC,得3x+3y一3=0,,解得紅=1,,2y=0,W6y=0,又∠ABC=∠ABO+∠CBO=60°,故n1=(1,0,1).所以在Rt△ABC中,,AC=ABtan60°=4√3X√3=12以A為坐標(biāo)原點(diǎn),,AB,AC所在直y、同理可求出平百DPC的-個(gè)法向量m,=(0,分,,1)?。壕€分別為x,y軸,以過A且垂直設(shè)平面BPC與平面DPC的夾角為0,,于平面ABC的直線為之軸建立空間直角坐標(biāo)系,,如圖所示,則則cos8=1m1lm2n1·n21三=5A(0,0,0),B(4√5,0,0),,C(0,x√+12,0,P2,23,E33,1,),廊平面BPC與平面DPC的夾角的余弦值為√O5所以AE-(51,2)A店=4,00C=(0,12,0.考點(diǎn)三…設(shè)平面AEC的法向量為n=(x,y,z),【例3】解:建立如圖所示的空間直角坐標(biāo)系,,則:正=0即35x+y+號=0,令z=25,則n=3則A(0,0,0),B(2√3,2,0),,C(0,4,0),C1(0,4,4),A1(0,0,4),.N是CC1的中l(wèi)n·AC=0,12y=0,點(diǎn),,N(0,4,2).(-1,0,23).(1)A=(0,4,2),A正=(2W3,2,0),則IAN1設(shè)平面AEB的法向量為m=(x1y1,之,),,=2√5,1AB|=4,A·AB=8.3:0即8at+2=0◆名=2,,則設(shè)點(diǎn)N到直線AB的距離為d,則mA麗=0,,43x1=0,則d,=1a12-A·AB)2ABI=√/20-4=4.m=(0,一3,2)(2)設(shè)平面ABN的一個(gè)法向量為n=(x,y,z),由n⊥AB,所以lcos(n,m)1=t·m4V3lnl·lm13nLAN,得n·A麗=23x+2y=0,n·AN=4y+2x=0,設(shè)二面角C-AE-B的大小為0,則sin日4W313令=2則y-19月a-(停-1,2小易知C1=(0,0,-2),設(shè)點(diǎn)C:到平面ABN的距離為d2,即二面角CAE-B的正弦值為11CN·nl一4則d2=4√3=5訓(xùn)練3解:(1)證明:因?yàn)樗倪呅蜛BCD為矩形,,所以AB⊥AD.又平面PADL平面ABCD,平面PAD∩平面ABCD=AD,(3):直線AA1與BN為異面直線,,AA1=(0,0,4),BN=所以AB⊥平面PAD,故AB I PD.(一2√3,2,2),(2)如圖,,過點(diǎn)P作AD的垂線,,垂足為點(diǎn)設(shè)直線AA1與BN的公垂線的方向向量為u=(x1y1,之:),O,過點(diǎn)O作BC的垂線,,垂足為點(diǎn)G,連接PG,則PO⊥平面ABCD,BCL平面POG,Cn52+3w2a-BCIPG.解得W3x=,在Rt△BPC中,,BC=6,PG=2Y3,GC=2621=0.,BG=V631令x1=1,則y1=√3,即u=(1W3,0),文A0=,劉0P=VRG-0E=√骨,,成W校錐又AB=(23,2,0).設(shè)直線AA1到直線BN的距離為d3,PAD尚體家為V=吉·6·m·√4m則d,=uAB1-4y5=2w5.u2智V8-6訓(xùn)練解:(1)證明:由題知AA1=2,AD=1,A1D=√5,,因?yàn)閙√8-6m2=√8m2-6m因?yàn)锳D2+A1A2=5=A1D2,所以A1A⊥AD,又BB⊥BC,B1B∥A1A,所以A1ALBC,=+.又AD∩BC=B,所以A:A⊥平面ABC,又CDC平面ABC,所以CD⊥AA,,效當(dāng)m-號,哪AB-√63時(shí),,四棱錐P-ABCD的體積最大.在正三角形ABC中,,D為AB中點(diǎn),于是CD.LAB,又AB∩AA1=A,所以CD⊥平面ABB:A1·高中總復(fù)習(xí)·數(shù)學(xué)509參考答案與詳解
本文標(biāo)簽: